

CUBIT Geometry

CUBIT User Workshop Sandia National Labs Jan. 21-22, 1997

Outline

Parallel Computing Sciences Department

- Use of geometry in CUBIT
- Geometry creation
- Geometry import & export
- Geometry naming & identification
- Geometry transformations & booleans
- Non-manifold geometry
- Geometry demo

Use of Geometry in CUBIT

Parallel Computing Sciences Department

- Geometry is the continuous representation of the object being modeled; mesh is the discretized representation
- Topological entities in CUBIT:

Use of Geometry in CUBIT (cont)

Parallel Computing Sciences Department

Geometry entities are approximated with mesh entities of same order

- Most user interaction in CUBIT will be with geometry entities, not mesh entities
- Geometry can be created inside CUBIT or imported from a file in ACIS or fastq formats

Geometry Creation

Parallel Computing Sciences Department

 A limited set of primitive solids can be created within CUBIT

- These solids can be manipulated with booleans & transformations to create complex shapes
- However, CUBIT is not intended to be a fully capable CAD system; other software (Pro/E, SolidWorks, etc) is more appropriate for large models

Geometry Creation Syntax

Parallel Computing Sciences Department

- [create] brick x <x-dimension> [y <y-dim> z <z-dim>]
- [create] cylinder height <z-height> radius <x/y-radius>
- [create] prism height <z-height> sides <nsides> major [radius] <x-radius> minor [radius] <y-radius>
- [create] frustum z <z-height> major [radius] <x-radius>
 [minor [radius] <y-radius> top <top-x-radius>]
- [create] pyramid z <z-height> sides <nsides> major [radius] <x-radius> minor [radius] <y-radius> top <top-x-radius>
- [create] sphere radius < radius > [inner [radius] < inner_radius >]
 [delete] [xpositive] [ypositive] [zpositive]
- [create] torus major [radius] <major-radius> minor [radius] <minor-radius>

Geometry Import & Export

Parallel Computing Sciences Department

Geometry can be imported directly in fastq and ACIS formats:

```
CUBIT> Import acis 'acis-file-name'
CUBIT> Import fastq 'fastq-file-name'
```

- ACIS geometry can be created in several ways:
 - Generate in Pro/Engineer & translate using Arlo Ames' translator
 - Generate directly in AutoCAD, SolidWorks, SolidEdge, Aries, Trispectives, and HP SolidDesigner, and write ACIS directly
- ACIS geometry can also be written out from CUBIT:

```
CUBIT> Export acis 'acis-file-name'
```

Geometry Naming & Identification

Parallel Computing Sciences Department

Geometry is given id numbers; names can also be assigned:

```
CUBIT> Surface 1 name 'frontsurf'
```

Geometry can be identified by name or id number:

```
CUBIT> Surface 1 scheme pave
CUBIT> frontsurf scheme pave
```

Aprepro function can be used to refer to last-created entity:

```
CUBIT> Create brick x 10
CUBIT> Volume {Id("volume")} name 'firstbrick'
```

Some useful id-related commands:

```
CUBIT> Compress ids

CUBIT> List {body|volume|surface|curve|vertex} ids
```

Geometry Transformations & Booleans (Applied to *Body*'s)

Parallel Computing Sciences Department

- Geometry transformations available in CUBIT:
 - Copy

Reflect

Move

Restore

- Scale
- Geometry booleans available in CUBIT:

- Other geometry operations available:
 - Imprint one body on another
 Sweep surface into solid*

Non-manifold geometry

Parallel Computing Sciences Department

 When imported or created, geometry is manifold:

• To make a shared (non-manifold) surface, use:

CUBIT> merge all

- The details:
 - Vertices, curves and surfaces must all be co-incident
 - Geometry always exported as manifold model
 - Can do selective or de-selective merging
 - In general, do merging after all geometry operations

Geometry Demo

Parallel Computing Sciences Department

• Journal file in 'geomdemo.jou'